A Distributed Treatment of Exceptions in Multiagent Contracts

Özgür Kafalı and Pınar Yolum

Department of Computer Engineering - Boğaziçi University - Turkey

Declarative Agent Languages and Technologies (DALT)

May 3, 2011
Exceptions

- Commitments are widely used for specifying agent interactions and regulating contracts.
- However, in open MAS, there are no guarantees on how agents will carry out their interactions.
- Exceptions might occur even if the agent carries out its specification correctly, are often identical to commitment violation.
- An agent should be able to
 - monitor its interactions,
 - step in if there is a problem.
To Expect or Not To Expect?
To Expect or Not To Expect?
To Expect or Not To Expect?

pay

deliver in 3 days
To Expect or Not To Expect?

Monday Tuesday Wednesday Thursday Friday
To Expect or Not To Expect?

Case I: Typical violation

Monday Tuesday Wednesday Thursday Friday

pay

deliver in 3 days

deadline
To Expect or Not To Expect?

Case I: Typical violation

Monday Tuesday Wednesday Thursday Friday

pay

deliver in 3 days

deadline
To Expect or Not To Expect?

pay

deliver in 3 days

Monday Tuesday Wednesday Thursday Friday

Case I: Typical violation
To Expect or Not To Expect?

Case I: Typical violation

Monday Tuesday Wednesday Thursday Friday

deadline

pay
deliver in 3 days
To Expect or Not To Expect?

Case I: Typical violation

Monday, Tuesday, Wednesday, Thursday, Friday
To Expect or Not To Expect?

Case II: Expect late delivery
To Expect or Not To Expect?

Case II: Expect late delivery
To Expect or Not To Expect?

Case II: Expect late delivery
To Expect or Not To Expect?

Case II: Expect late delivery

Monday | Tuesday | Wednesday | Thursday | Friday

Ozgur Kafali and Pinar Yolum

A Distributed Treatment of Exceptions

DALT 2011
To Expect or Not To Expect?

Case II: Expect late delivery
To Expect or Not To Expect?

Case III: Expect early delivery

Monday Tuesday Wednesday Thursday Friday

Ozgür Kafalı and Pınar Yolum

A Distributed Treatment of Exceptions

DALT 2011
Introduction

To Expect or Not To Expect?

Case III: Expect early delivery

Monday Tuesday Wednesday Thursday Friday

deadline

deliver in 3 days

pay

Monday Tuesday Wednesday Thursday Friday

Case III: Expect early delivery
To Expect or Not To Expect?

Case III: Expect early delivery

Monday Tuesday Wednesday Thursday Friday

Ozgur Kafali and Pinar Yolum

A Distributed Treatment of Exceptions

DALT 2011
To Expect or Not To Expect?

Case III: Expect early delivery
Motivation

- Do not only look for commitment violations
- Take into account agent’s projections about the future
- Only signal an exception if those projections are not satisfied
Distributed Multigent Architecture

Agent$_i$

Reasoner

Agent$_j$

Reasoner

Agent$_k$

Reasoner

Ozgur Kafali and Pinar Yolum

A Distributed Treatment of Exceptions

DALT 2011
Distributed Multigent Architecture

\[\text{Protocol}_{ij} \]

\[\text{pay}(i,j) \rightarrow \text{paid} \]
Distributed Multigent Architecture

\[\text{Agent}_i \xrightarrow{\text{pay}(i,j) \rightarrow \text{paid}} \xrightarrow{\text{Protocol}_{ij}} \text{Agent}_j \]

\[\text{Protocol}_{ij} \xrightarrow{\text{active} \rightarrow \text{fulfilled}} \]

\[\text{Protocol}_{ij} \xrightarrow{\text{enacts}} \text{Agent}_i \xrightarrow{\text{enacts}} \text{Agent}_j \]

\[\text{Commitment Theory} \]
Distributed Multigent Architecture

Protocol$_{ij}$

Agent$_i$

Reasoner

delivery on Thursday

pay(i,j) → paid

→

Agent$_j$

Reasoner

Protocol$_{ij}$
enacts

Agent$_k$

Reasoner

Commitment Theory

active → fulfilled

uses

enacts

— — — —
Distributed Multigent Architecture

\[\text{Agent}_i \] \quad \text{Reasoner} \quad \text{enacts} \quad \text{pay}(i,j) \to \text{paid} \quad \text{enacts} \quad \text{Agent}_j \] \quad \text{Reasoner} \\
\text{delivery on Thursday} \quad \text{exception?} \\

\[\text{Agent}_k \] \quad \text{Reasoner} \quad \text{uses} \quad \text{active} \to \text{fulfilled} \\
\text{Commitment Theory}
States

- World: $S_G^T = \langle \Phi_G, C_G \rangle$
 - Φ_G is a finite set of atomic propositions that hold at T
 - C_G is a finite set of commitments that exist at T

- State: $S_A^T = \langle \Phi, C \rangle \subset S_G^T$

- Projected state: $PS_A^T = \langle \Phi_P, C_P \rangle$
Commitments

- Commitment: $C_{A_i, A_j}^{St}(\text{Ant, Con})$

(a) Conditional
- $C^c(Q, P)$
 - conditional
- $C^a(Q, P), Q$
 - active
- $C^v(Q, P), Q$
 - violated
- $C^f(Q, P), P$
 - fulfilled

(b) Base-level
- $C^v(\top, P)$
 - violated
- $C^a(\top, P)$
 - active
- $C^f(\top, P), P$
 - fulfilled
- $C^f(\top, P), P$
 - fulfilled
Fundamentals

- Compare two states and identify if one satisfies the other

\[X \models Y : "Y \text{ is satisfiable by } X" \]

- \(Y \) represents the minimum satisfactory condition

- \(X \) may include more than the necessary propositions or more beneficial commitments than \(Y \)
Satisfiability Network

\[
paid \land delivered
\]

paid

\[
paid \land delivered
\]

delivered
Satisfiability Network

\[C^a(\top, \text{paid}) \quad C^f(\top, \text{paid}) \quad C^f(\top, \text{delivered}) \quad C^a(\top, \text{delivered}) \]

\[C^v(\top, \text{paid}) \quad C^v(\top, \text{delivered}) \]
Satisfiability Network

$C^v(paid, delivered)$

$C^a(paid, delivered)$

$C^f(paid, delivered)$

paid

$\text{paid} \land \text{delivered}$

delivered

$C^a(\top, paid)$

$C^f(\top, paid)$

$C^f(\top, delivered)$

$C^a(\top, delivered)$

$C^v(\top, paid)$

$C^c(paid, delivered)$

$C^v(\top, delivered)$
Satisfiability

Satisfiability Network

\[C^v(paid, delivered) \]

\[C^a(paid, delivered) \]

\[C^f(paid, delivered) \]

\[paid \]

\[paid \land delivered \]

\[delivered \]

\[C^a(\top, paid) \]

\[C^f(\top, paid) \]

\[C^f(\top, delivered) \]

\[C^a(\top, delivered) \]

\[C^v(\top, paid) \]

\[C^c(paid, delivered) \]

\[C^v(\top, delivered) \]

\[\text{Ozg"ur Kafali and P"inar Yolum} \]

A Distributed Treatment of Exceptions

DALT 2011
Satisfiability Network

\[C^\vee(paid, delivered) \]

\[C^a(paid, delivered) \]

\[C^f(paid, delivered) \]

\[\text{paid} \]

\[\text{paid} \land \text{delivered} \]

\[\text{delivered} \]

\[C^a(\top, paid) \]

\[C^f(\top, paid) \]

\[C^f(\top, delivered) \]

\[C^a(\top, delivered) \]

\[C^v(\top, paid) \]

\[C^c(paid, delivered) \]

\[C^v(\top, delivered) \]
Satisfiability Network

\(C^v(paid, delivered) \)

\(C^a(paid, delivered) \)

\(C^f(paid, delivered) \)

\(paid \)

\(paid \land delivered \)

\(delivered \)

\(C^a(\top, paid) \)

\(C^f(\top, paid) \)

\(C^f(\top, delivered) \)

\(C^a(\top, delivered) \)

\(C^v(\top, paid) \)

\(C^c(paid, delivered) \)

\(C^v(\top, delivered) \)

\(\text{Özgür Kafalı and Pınar Yolum} \)

A Distributed Treatment of Exceptions

DALT 2011
Satisfiability Network

\[C^v(paid, delivered) \]

\[C^a(paid, delivered) \rightarrow C^v(paid, delivered) \rightarrow C^f(paid, delivered) \]

\[C^a(\top, paid) \]

\[C^f(\top, paid) \]

\[C^f(\top, delivered) \]

\[C^a(\top, delivered) \]

\[C^v(\top, paid) \]

\[C^c(paid, delivered) \]

\[C^v(\top, delivered) \]

\[paid \]

\[paid \land delivered \]

\[delivered \]

\[\Box \]

\[\Diamond \]
Properties

- \(\alpha \models \alpha \) (reflexive)

- not necessarily true that \(\beta \models \alpha \) or \(\beta \not\models \alpha \) if \(\alpha \models \beta \) (non-symmetric)

- \(\alpha \models \gamma \) if \(\alpha \models \beta \) and \(\beta \models \gamma \) (transitive)
When to React?

- State satisfiability based on term satisfiability

$$S^t_{\text{customer}}$$
- paid
- delivered
- \(C^f_{\text{mer,cus}}(\text{paid, delivered})\)

$$PS^t_{\text{customer}}$$
- paid
- delivered

An exception occurs for agent A if a projected state of A is not satisfiable.
Exceptions

Exception: typical violation

$S_{\text{customer}}^{\text{fri}}$

- paid
- $C_{\text{mer,cus}}^{\upsilon}(\text{paid, delivered})$

$\mathcal{P}S_{\text{customer}}^{\text{fri}}$

- paid
- delivered

deadline

Monday Tuesday Wednesday Thursday Friday
No exception: customer does not expect delivery

\[S_{\text{customer}}^{\text{fri}} \]

- paid
- \(C_{\text{mer,cus}}^{\vee}(\text{paid, delivered}) \)

\[\mathcal{P}S_{\text{customer}}^{\text{fri}} \]

- paid
- \(C_{\text{mer,cus}}^{\vee}(\top, \text{delivered}) \)

Monday Tuesday Wednesday Thursday Friday

Exceptions

Özgür Kafalı and Pınar Yolum

A Distributed Treatment of Exceptions

DALT 2011 13 / 16
Exception: customer expects early delivery

\[S_{\text{customer}}^{\text{thu}} \]
- paid
- \(C_{\text{mer}, \text{cus}}^{\text{a}}(\text{paid, delivered}) \)

\[\mathcal{P} S_{\text{customer}}^{\text{thu}} \]
- paid
- delivered

Monday Tuesday Wednesday Thursday Friday

deadline

Özgür Kafalı and Pınar Yolum
A Distributed Treatment of Exceptions

DALT 2011
Customer and merchant’s projections do not match

\[S_{\text{customer}}^{\text{thu}} \]

- paid
- \(C_{\text{mer,cus}}^a(paid, delivered) \)

\[\mathcal{P} S_{\text{customer}}^{\text{thu}} \]

- paid
- delivered

\[S_{\text{merchant}}^{\text{thu}} \]

- paid
- \(C_{\text{mer,cus}}^a(paid, delivered) \)

\[\mathcal{P} S_{\text{merchant}}^{\text{thu}} \]

- paid
- \(C_{\text{cou,mer}}^a(\top, delivered) \)
Considered exceptions from the agent’s side:
- Proposed a state-oriented approach to describe the agent’s world
- Capture agent’s expectations through projected states
- Built a satisfiability relation to compare projections to actual execution

Reachability relation:
- In the case of an exception, identify if it is recoverable or not
- If the commitment is still active, recovery is possible

Implement the framework with REC