
PriGuardTool: A Web-based Tool to Detect
Privacy Violations Semantically

Nadin Kökciyan (B) and Pınar Yolum

Department of Computer Engineering,
Bogazici University, 34342 Bebek, Istanbul, Turkey
{nadin.kokciyan,pinar.yolum}@boun.edu.tr

Abstract. Online social networks contain plethora of information about
its users. While users enjoy sharing information online, not all informa-
tion is meant to be seen by the entire network. Managing the privacy of
users has become an important aspect of such online networks. An im-
portant part of this is detecting privacy violations and notifying the users
so that they can take appropriate actions. While various approaches for
detecting privacy violations exist, most of the approaches do not have a
running tool that can exhibit the principles of its underlying approach.

This paper presents PriGuardTool, a Web-based tool that can detect
privacy violations in online social networks. Each user is represented
by a software agent in the system that first collects user’s privacy con-
cerns, explicitly specified as what types of content are meant to be seen
by which audience. The system represents these privacy constraints as
commitments between the user and the online social network. The user
constraints are converted into commitments automatically by the agent.
The system then monitors which commitments are violated based on the
content shown to users, such that a violated commitment represents a
privacy violation in the system. While checking for violations, the ef-
fects of posts on the system as well as the semantic relations and rules
are considered. We evaluate PriGuardTool by using various real-life
scenarios and real data that have been collected over Facebook. Our ini-
tial results show that realistic privacy violations can be detected using
PriGuardTool.

Keywords: Privacy, Online Social Networks, Commitment, Ontology

1 Introduction

Privacy is the right of an individual to express herself selectively. An individual
may prefer to expose certain information about herself to a certain group of
others, but may choose to hide another set of information. This right is difficult to
maintain on the Web since information can propagate easily. It is even worse on
online social networks since different users can share content about an individual,
without expecting an explicit confirmation from the individual. This results in
tremendous privacy violations to take place [5].



Consider the following examples: A user herself misconfigures the system and
reveal unintended content (e.g., the user shares holiday pictures with colleagues
when not intending to); or a friend of a user shares a content not knowing
that the user would not want the content online (e.g., a friend shares a picture
where the user is drunk). These simple examples show that both a user herself or
friends can take simple actions that lead to privacy violations. More importantly,
sometimes the privacy violations are more subtle. In order to be discovered,
they require various pieces of information to be put together. For example, a
user does not reveal her location but shares a picture that has an embedded
geotag. Any software that can process the geotags can help others discover the
user’s location [6]. Sometimes, the information needed to decipher the violations
is not that straightforward. For example, looking at two friends check-ins to a
remote island could signal that they are together. Inferring this information,
when neither have explicitly specified it, could easily violate their privacy. In
all cases, the users seek tools that will help them to preserve their privacy and
catch privacy breaches if any, so that they can take an action.

Most of the existing commercial systems on the Web allow a user to specify
constraints on her own posts only and enforce them. However, this does not nec-
essarily avoid privacy violations. That is, if a user does not want her colleagues
to see her holiday pictures but her group holiday picture is shared publicly by
a friend, her privacy is still violated. Various approaches to deal with privacy
violations exist in the literature. One set of approaches aim to prevent privacy
violations in the first place [15]. The approaches that employ argumentation or
negotiation techniques among users to reach agreements before sharing content
fall into this category [25,17,9]. Another set of approaches aim to detect privacy
violations. This set of approaches represent user’s privacy constraints formally
and try to find out if the network evolves into a state where these constraints
are violated. An important work is that of Hu et al., where privacy concerns are
represented as multiparty access control rules [7]. Their work is based on a social
network model, a multiparty policy specification scheme and a mechanism to en-
force policies to resolve multiparty privacy conflicts. They benefit from Answer
Set Programming (ASP) to represent their proposed model. Another important
work is that of Carminati et al. that studies a semantic web based framework
to manage access control in OSNs by generating semantic policies [3]. Their
proposed social network operates according to agreed system-level policies. In
a similar line, we have previously proposed a semantic meta-model for repre-
senting agent-based online social networks [12]. We further proposed a model
PriGuard that represents privacy constraints as commitments between users
and the online social network, which are widely-used constructs for modeling in-
teractions between agents [26]. This paper formally describes PriGuardTool,
a Web-based tool that implements PriGuard model that detects privacy vio-
lations and notifies users to take an action.

PriGuardTool is a privacy management system. It enables users to enter
their privacy constraints and then to check for privacy violations at desired
times, similar in principle to virus checks. The privacy constraints capture a



user’s expectation from the network; e.g., a user may not want her colleagues to
see her pictures but might be fine if friends see them. A privacy violation can
happen explicitly (e.g., if the user shares a picture with colleagues by mistake)
or implicitly (e.g., if the actions of the user or the others lead colleagues to
have access to the picture). PriGuardTool is equipped to check for both
kinds of privacy violations. Implicit violations are especially difficult to detect
because they require inferences to be made. To deal with this, PriGuardTool
uses ontologies to represent knowledge and semantic rules, then it can check for
violations both on the ontologies and on the inferred knowledge. To demonstrate
its workings, we have implemented it so that it can work on real data that are
extracted from Facebook. That is, a user can login with her Facebook credentials,
allow the tool to download all her data (which are converted to an ontology),
and check for privacy violations there.

The rest of this paper is organized as follows: Section 2 explains our approach
for detecting privacy violations in online social networks. Section 3 develops the
principles behind our developed tool. Section 4 explains in detail the design
choices made to implement the proposed tool. Section 5 evaluates the tool in the
context of a real online social network. Section 6 discusses the work in relation
to other approaches for managing users’ privacy in online social networks, and
several limitations of current work.

2 Background: PriGuard Approach

PriGuard is a commitment-based model for privacy-aware online social net-
works [12] that enables users to detect privacy violations. Each user in the social
network is represented by an agent that is responsible for keeping track of the
user’s privacy constraints and checking for violations when needed. The online
social network is defined by the set of relationships, content types and a set of
semantic rules. The set of relationships pertains to the users (e.g., friend, col-
league, and so on). The content types capture allowed contents (e.g., picture,
check-in, text, and so on). The semantic rules capture how the social network
operates (e.g., content can be reshared, contents are shown selectively, and so
on). A snapshot of the online social network captures the agents, their relation-
ships and the content in the online social network. Even for a single snapshot,
one can focus on different views of it. For example, the global view of the system
would contain all the content of all the agents in the system; while a smaller,
local view can contain the content shared by a single agent last month. Pri-
Guard uses views to check if privacy of users are violated or not. Depending on
the view, the extent of privacy check can be managed.

In PriGuard, the social network domain is formally defined using Descrip-
tion Logics (DL). The domain consists of concepts (e.g., Agent), relations (e.g.,
isFriendOf ) and individuals names (e.g., :alice)1. On the other hand, there is a

1 We denote a Concept with text in mono-spaced format, a relation with italic text,
and an :individual with a colon followed by text in mono-spaced format.



need for semantic rules so that a social network can operate accordingly. In Pri-
Guard, the semantic rules are specified as Datalog rules. These Datalog rules
capture the fundamental operations of OSN, independent from specific users. For
example, sharesPost(X,P) → canSeePost(X,P) is a Datalog rule, which states
that an agent can see the posts that it shares. In this rule, sharesPost and
canSeePost are predicate symbols; X and P are universally quantified variables.

While the OSN has its operation rules, the users have privacy expectations
from the system. These privacy expectations are captured with conditional com-
mitments [22,26]. Informally, conditional commitments represent a contract be-
tween two parties, such that each party commits to realizing certain predicates.
In terms of privacy, this maps to a situation where a user commits to specifying
information about friends, colleagues, and so on correctly and the OSN commits
to ensuring the correct set of individuals will be shown the content (based on
user’s specification). A commitment is denoted as a four-place relation: C(debtor ;
creditor ; antecedent ; consequent). The debtor is committed to the creditor to
bring about the consequent if the creditor brings about the antecedent. First,
each user specifies her privacy concern. Second, the agent transforms such a pri-
vacy concern into a commitment so that it can later be verified. Consider the
following example:

Example 1 Charlie shares a concert picture with everyone and tags Alice in it.
However, Alice does not want other users to see her pictures.

Here, Alice has a privacy concern such that she does not want to be seen by
others. She does not have any control on what is shared by her friends. After Alice
specifies her concern, Alice’s agent (:alice) generates a commitment between
:alice and the social network operator. The antecedent of the commitment
describes the individuals affected by the commitment (e.g., agents except Alice)
and the content that the commitment is about (e.g., pictures). The consequent
of the commitment says whether the specified individuals should see or not see
the content. Overall, Alice only promises to share content on this online social
network if the online social network promises not to reveal information about
her whereabouts.

A commitment violation occurs, when the antecedent holds but not the con-
sequent. In another words, the social network operator fails to bring about the
consequent. This signals a breach of privacy. To detect such commitment vio-
lations, each agent computes under which conditions a commitment would be
violated and generates a violation statement. For example, people seeing Alice’s
pictures would violate Alice’s commitment that is in an active state (i.e., the
antecedent is achieved).

Agents use the domain information, the semantic rules, the view information
and the violation statements to detect privacy violations. Then, each agent re-
ports the detection results; it depends on the creditor of the commitment (e.g.,
the user) to take an action accordingly.



3 PriGuardTool

PriGuardTool is a Web-based tool that implements PriGuard model [12].
We use ontologies to capture the domain, view, and the semantic rules of the
social network.

Domain: The social network domain is represented using PriGuard ontology
specified in OWL 2 Web Ontology Language [18]. PriGuard model is a DL
model, which can be completely defined in an OWL 2 ontology. In this ontol-
ogy, there are classes that define domain concepts, object properties that relate
individuals and data properties that describe individual-specific properties. For
example, Agent is a class, which describes a set of users in the social network.
:alice and :bob might be individuals that are elements of Agent class. These two
individuals can be connected to each other via the object property isFriendOf .
:alice can have a name “Alice Kingsleigh”, which is described by the data
property hasName.

In a social network, it is important to model the users, the relationships
between users and the posts being shared by the users. As mentioned before,
users are represented as Agent individuals in the ontology. The relationships are
defined as object properties between agents. isConnectedTo is the most general
property that defines a connection between two agents. However, it is possible
to describe more specific relationships such as isColleagueOf . Post class is the
most general class to represent a post. In an ontology, one can define complex
classes. For example, we use complex classes to model specific posts such as
LocationPost, which can be defined as: Post u ∃hasLocation.Location (posts that
have at least one location). Each post is initialized by an agent (hasCreator).
Moreover, an agent can share posts (sharesPost) and see posts (canSeePost).
A post can be about an agent (isAbout). Posts can include textual, visual or
locational information represented as Text, Medium and Location respectively.
Mediums can include geotags (hasGeotag). A Post is related to these classes via
hasText , hasMedium and hasLocation properties. A person can be mentioned in
a text (mentionedPerson), tagged in a medium (taggedPerson) or at a location
(withPerson). Each post can be associated with contextual information (Context)
as well. A specific Audience is meant to see a post. hasAudience relates audience
individuals to post individuals. Hence, members of this audience are described
by the use of hasMember property.

View: In PriGuard ontology, a view is a set of class assertions (e.g., ClassAs-
sertion(Agent :alice)) and object property assertions (e.g., ObjectPropertyAsser-
tion (isFriendOf :alice :charlie)). In Table 1, we show the system view for Ex-
ample 1. We use the abbreviations CA and OPA for ClassAssertion and Object-
PropertyAssertion respectively. The view of Example 1 is specified in functional-
style syntax. At this particular view, :charlie creates and shares a post (:pc1)
including a medium (:picConcert), an :audience with :alice, :bob, :diane as
members and a person tag of :alice. The relationships are defined as follows:



Table 1. System View of Example 1. :charlie Shares a Post :pc1

CA(Agent :alice) CA(Agent :bob)
CA(Agent :charlie) CA(Agent :diane)
CA(Post :pc1) CA(Picture :picConcert)
CA(Audience :audience)

OPA(isFriendOf :alice :bob) OPA(isFriendOf :alice :charlie)
OPA(isFriendOf :bob :charlie) OPA(isFriendOf :bob :diane)
OPA(sharesPost :charlie :pc1) OPA(hasAudience :pc1 :audience)
OPA(hasMedium :pc1 :picConcert) OPA(taggedPerson :picConcert :alice)
OPA(hasMember :audience :alice) OPA(hasMember :audience :diane)
OPA(hasMember :audience :bob) OPA(hasCreator :pc1 :charlie)

:alice, :bob and :charlie are friends of each other; :diane is a friend of :bob.
The remaining assertions include the class assertions for each instance.

DL Rules: A social network needs a set of semantic rules to operate. Recall
that, in PriGuard, rules are defined as Datalog rules. OWL 2 is an expressive
language to represent some Datalog rules as DL rules. For example, consider the
rule r7 in Table 2. This rule states that a post that includes a geotagged picture
is an instance of LocationPost class in the ontology. The remaining DL rules are
as follows. If an agent shares a post, then the agent can see it (r1). An agent
can see a post if it is in the audience of that post (r2). If an agent creates a post
then this post is about that agent (r3). Similarly, a post is about an agent if the
agent is tagged at a specific location (r4), in a medium (r5) or mentioned in a
text (r6). If an agent is tagged in a picture and shares another post by declaring
its location then the location information of other agents tagged in that picture
is revealed as well (r8).

Table 2. Example Semantic Rules as Description Logic (DL) Rules

r1: sharesPost v canSeePost

r2: hasMember− ◦ hasAudience− ◦ R sharedPost v canSeePost

r3: hasCreator v isAbout

r4: hasLocation ◦ withPerson v isAbout

r5: hasMedium ◦ taggedPerson v isAbout

r6: hasText ◦ mentionedPerson v isAbout

r7: Post u ∃hasMedium.∃hasGeotag .Location v LocationPost

r8: R locPost ◦ sharesPost− ◦ taggedPerson− ◦ hasMedium− ◦ sharesPost− v isAbout



Fig. 1. Alice declaring her friends to not see her medium posts.

Commitments: Users input their privacy concerns via PriGuardTool inter-
face as depicted in Figure 1. The user can specify her privacy concerns regarding
medium posts, location posts and posts that the user is tagged in. For each cate-
gory, the user declares two groups of people: one group that can see that category
and a group that cannot. If the user specifies conflicting privacy concerns (e.g.,
a user is part of both groups), the agent adopts a conservative approach to min-
imize privacy violations to occur; i.e., it finds conflicting users and move them
to the group that cannot see the content.

PriGuard ontology is used to semantically describe the commitments. Ta-
ble 3 shows the commitments that Alice is in involved in. Since current OSNs
are centralized, our commitments are among users and the OSN operator (:osn).
Recall that Alice wants to be the only one who can see her medium posts (see
Example 1). Hence, two commitments are generated C1 and C2. In C1, :osn

promises :alice to show her medium posts to :alice. In C2, :osn promises
:alice to not reveal her medium posts to others.

Table 3. Commitments for Example 1

Ci <Debtor; Creditor; Antecedent; Consequent>

C1: <:osn; :alice; X==:alice, is-
About(P, :alice),
MediumPost(P);

canSeePost(X, P)>

C2: <:osn; :alice; Agent(X),
not(X==:alice),
isAbout(P, :alice),
MediumPost(P);

not(canSeePost(X, P))>



Violation Statements: After all the semantic inferences are made by the
use of PriGuard ontology and DL rules, the agent should be able to query
this knowledge to detect privacy violations in the social network. A violation
statement is a statement wherein a commitment would be violated. Here, agents
use SPARQL queries to represent commitment violations. In another words, a
violation statement is mapped to a SPARQL query.

SPARQL is a way of querying RDF-based information [21]. Note that on-
tological axioms can also be seen as RDF triples. In a SPARQL query, there
are query variables, which start with a question mark (e.g., ?x), to retrieve the
desired results. We only focus on SELECT queries with filter expressions NOT
EXISTS and EXISTS to represent violation statements. Recall that the an-
tecedent of a commitment includes information about agents that are the target
audience of the commitment, and the set of posts being shared. The consequent
of a commitment specifies whether agents could see or not the content. In the
antecedent, each predicate of arity two is mapped into a RDF triple. For ex-
ample, isAbout(P, :alice) is transformed into “?p osn:isAbout osn:alice”. Each
predicate of arity one is mapped into an rdf:type triple. For example, Agent(X)
is transformed into “?x rdf:type osn:Agent”. Equality or non-equality expres-
sions become FILTER expressions in SPARQL. For example, not(X==:alice)
is transformed into “FILTER (?x != osn:alice)”. The consequent of a commit-
ment is mapped into a FILTER EXISTS or FILTER NOT EXISTS expression
in SPARQL. If the consequent of a commitment is positive, then this commit-
ment is violated if the consequent does not hold and the antecedent holds; i.e.,
it is mapped to FILTER NOT EXISTS expression. Otherwise, it is transformed
into a FILTER EXISTS expression. For example, the consequent of C2 is not
positive (not(canSeePost(X, P))) hence it is transformed into “FILTER EXISTS
{ ?x osn:canSeePost ?p }”.

A complete SPARQL query is shown in Table 4. The PREFIX declares
a namespace prefix. osn prefix shows where to find PriGuard ontology for
querying. This SELECT query declares two query variables (?x and ?p) to be
retrieved. The core part of the query is defined in the WHERE block, which
consists of four triples (one is used in a filter expression). This query returns the
set of posts that can be seen by agents except Alice.

:charlie shares a post :pc1, which includes a picture of :alice and :charlie.
The audience is set to everyone. :alice checks for possible privacy violations.
PriGuardTool finds the corresponding commitments: C1 and C2. C1 is not
violated since Alice can see her posts. However, the violation statement of C2 (as
shown in Table 4) holds in the system with the substitutions {?x/{:bob, :charlie}}
and {?p/:pc1}. Here, a privacy violation occurs because Alice and Charlie have
conflicting privacy concerns; i.e, one wants to keep it personal while the other
prefers sharing it with everyone. Thus, it is not possible to fulfill both of their
concerns at the same time.



Table 4. The Violation Statement of C2

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX osn: <http://mas.cmpe.boun.edu.tr/ontologies/osn#>

SELECT ?x ?p WHERE {
?x rdf:type osn:Agent .
?p osn:isAbout osn:alice .
?p rdf:type osn:MediumPost .
FILTER EXISTS {

?x osn:canSeePost ?p .
FILTER (?x != osn:alice)

}
}

4 Implementation

We have implemented PriGuardTool as a Web application2. We have used
PHP for the front-end development and Java for the back-end development.
PriGuardTool is able to work with various social networks. For this, a gateway
should be developed for user authentication and data collection. Here, we decided
to work with Facebook since it is widely used around the world. We integrated
Facebook Login to our web application to enable user authentication. We also
implemented a Facebook gateway to collect data from Facebook users.

Figure 2 shows the information flow of PriGuardTool. The tasks are rep-
resented as rectangles. A human task is depicted as a task with a figure on top
while the other tasks are automated tasks. The solid arrows represent the flow
between tasks. The data operations are shown as dashed arrows. First, the user
logs into the system by providing her Facebook credentials. The tool collects
the user data and stores in a database (MongoDB). The user inputs her privacy
concerns, which are stored as a JSON document. These privacy concerns are
transformed into commitments between the user and the social network (Face-
book) operator, and the corresponding violation statements (SPARQL queries)
are generated as well. On the other branch, Generate Ontologies task takes
care of reading user data from MongoDB, creating and storing ontologies in
MongoDB. Detect Privacy Violations task uses SPARQL queries and the user’s
ontologies to monitor the social network for privacy violations. Finally, the user
is shown a list of posts that violate her privacy if any. Then, the user can take
an action such as modifying a post (e.g., removing a person from the audience
of that post). Once the user logs out from the system, the tool removes the user
data and the generated ontologies. This ensures that no information remains in
the database after the detection is completed.

Data Collection: We extract information about the user from Facebook by the
use of Facebook Graph API3. We request the following login permissions: email,

2 http://mas.cmpe.boun.edu.tr/priguardtool
3 https://developers.facebook.com/docs/graph-api

http://mas.cmpe.boun.edu.tr/priguardtool
https://developers.facebook.com/docs/graph-api


Input Privacy 
Concerns

Generate 
Commitments

Generate Violation 
Statements

Generate 
Ontologies

Detect Privacy 
Violations

Check Detection 
Results

JSON

OWL

SPARQL

Mongo
DB

Human Task

Task

Flow

Data Flow

Legend

Fig. 2. PriGuardTool Implementation Steps

public profile, user friends, user photos, user posts. These permissions allow us
to collect information about Facebook posts together with the comments and
likes of other users. We use MongoDB4, which is an open-source document-
oriented database, to keep the extracted information. Graph API supports the
exchange of JSON documents, and it becomes reasonable to store the user data
as a JSON document in MongoDB. Note that we only extract information of
the user, which may be shared by the user itself or by a friend of the user (i.e.,
the user is tagged in a post shared by a friend).

Facebook Graph API (v2.5) enables extraction of some information of a user,
such as the user’s posts, the comments on the posts or the likes of the posts.
However, it does not allow us to extract some important information about the
users, such as the list of friends of a user. Further, it is not possible to extract any
information about the posts of other users. As another limitation, one cannot
extract information about user-defined lists (e.g., if the user has a family list, it
is not possible to get users that belong to that list). We analyze the collected
information of the user so that we can come up with an approximate list of
friends. For this, we analyze the interactions of other users with the user. For
example, if a person makes a comment about a post shared by the user, then
we consider this person as being a friend of the user. So, this list includes more
users than the actual list of friends of the user. Consider the user N3 in Table 5.
The actual number of friends for this user is 671. However, by analyzing the
interaction data of the user, we come up with a list of 1060 users. Since the
constructed list is only a partial view of the social network, our tool may not
detect all of the violations. Moreover, the approximate list of friends may contain
users who are not actual friends of the user (e.g., a friend of friend of the user
will be included in the approximate list as a result of liking a post of the user).

4 https://www.mongodb.com/

https://www.mongodb.com/


In such cases, the tool can report false positive violations. For example, if the
user does not want her content to be seen by her friends, the tool can report
a violation where a friend of friend of the user sees her content. However, if
PriGuardTool was a service of the online social network with access to more
information, such false positives would not take place.

Ontology Generation: Recall that PriGuardTool makes use of ontologies
to keep information about the social network domain and the user. The user
data, which is a JSON document, should be transformed into class and property
assertions in PriGuard ontology. This transformation is realized by a Java
application, which parses a JSON document and generate an ontology for the
user. We use Apache Jena5, which is an open-source Java framework to work
with ontologies. The user may choose to check for privacy violations for a subset
of her posts. Hence, ontologies of different sizes can be generated per request.

Note that the ontology generation module can take a long time if the user
has lots of friends and posts. Hence, we adopt multi-threading to generate large
ontologies. It is important to keep large ontologies in a database since privacy
violations can also be detected offline. The maximum size of document that can
be stored in MongoDB is 16MB. We use GridFS specification in MongoDB, which
divides a document into various chunks that are stored separately as documents.

Fig. 3. Alice checks the posts that violate her privacy.

Detection Results: The users input their privacy concerns to detect privacy
violations on Facebook as shown in Figure 1. Once the user checks for violations,
a list of posts that violate the privacy of the user are displayed on the Web
application. For example, Alice did not want Bob and Charlie to see her medium
posts. When she checks for violations, she is notified that Charlie’s post violates
her privacy as shown in Figure 3. Here, Alice can get in touch with Charlie so
that he modifies or removes this post since she is not the owner that post.

5 https://jena.apache.org/

https://jena.apache.org/


PriGuardTool can be used in two modes: online and offline. In both modes,
agents use the user data to generate an ontology, which is loaded into memory
for checking privacy violations. In online mode, PriGuardTool only considers
posts that have been shared about the user in last three months. We do this to
return recent privacy violations first in a short time. However, in offline mode,
privacy violations are detected by the use of large ontologies. The user can also
check the detection results that have been computed in offline mode. Then, the
user can try to minimize the privacy violations to occur by modifying the posts
if possible.

5 Evaluation

In the context of privacy, it is difficult to evaluate approaches and tools since
there are no established data sets. Moreover, privacy is subjective hence it be-
comes difficult to talk of a gold standard that works for all. One way to go about
this is to create synthetic data. However, ensuring that the synthetic data will
adhere to real life properties is also difficult. Instead of working with synthetic
data, it is ideal to work with real users. For this, we show the applicability of
PriGuard approach in a Web application that is integrated to Facebook.

5.1 Experiments with Facebook Users

To evaluate our PriGuardTool implementation, we have worked with real
data of Facebook users. We have collected data from Facebook users who used
our tool to protect their privacy. Here, we generate five ontologies regarding
the user data. The first four ontologies include posts shared last one month,
three months, six months and last year. The fifth ontology includes the latest
five hundred posts shared by the user. Additionally, the users specified their
privacy concerns, which were translated into commitments. Then, the user agents
checked for commitment violations in generated ontologies to report privacy
violations.

We perform our experiments on Intel Xeon 3050 machine with 2.13 GHz
and 4 GB of memory running Ubuntu 14.04 (64-bit). In Table 5, we present the
evaluation results for three Facebook users. Each user inputs a privacy concern
such that she chooses five people who should not see her medium posts. Then, the
user checks for privacy violations. The user agent transforms this privacy concern
into a commitment. Then, the user agent searches for commitment violations and
reports if any.

The users have different numbers of friends and posts (N1, N2 and N3). For
each generated ontology of the user, we give information about the number of
posts and the number of detected violations. Moreover, we measure the time
that it takes to detect violations and to generate the corresponding ontology.
For example, the user N2 has 590 friends and 1894 posts. Her ontology includes
information about posts shared in last six months. This ontology was generated
in 10.79 seconds from the 51 posts she has made on Facebook. The tool detected



Table 5. Results for Facebook Users

Nx(Friend#, T otalPost#) 1mo. 3mo. 6mo. 12mo. All

N1(293, 123)

Post Number 2 9 27 47 123

Violation Number 1 8 25 43 100

Detection Time (s) 0.65 1.21 5.5 11.36 26.08

Ontology Gen. Time (s) 1.2 2.24 4.6 6.34 11.12

N2(590, 1894)

Post Number 5 19 51 134 500

Violation Number 5 14 37 89 332

Detection Time (s) 3.07 5.16 18.48 70.87 696.51

Ontology Gen. Time (s) 2.33 6.51 10.79 18.07 33.7

N3(1060, 2945)

Post Number 18 77 124 330 500

Violation Number 9 44 69 164 237

Detection Time (s) 3.28 76.74 187.53 783.06 1285.73

Ontology Gen. Time (s) 3.34 9.85 16.23 41.23 67.14

37 privacy violations regarding the user’s privacy concerns. The detection took
18.48 seconds. Whenever the social network of a user is small in size, the time for
generating an ontology and detecting violations is less. For example, it takes only
11.12 seconds to generate an ontology for N1 and 26.08 seconds for detecting
100 violations when we consider all posts. However, it takes longer when users
are part of a large network. Even if the ontology generation time is reasonable
(i.e., 67.14 seconds to generate the largest ontology for N3), the detection takes
a long time since the axiom number in the ontology increases as the result of
ontological reasoning. For example, for N3, the detection took approximately 20
minutes. Hence, such a detection should be done in offline mode if the detection
is not achieved in a distributed manner as we do here. In online mode, the tool
can report results in less than 80 seconds (considering that the user N3 is a very
active user) since we only consider posts shared in last three months. The user
can then check the privacy violations and try to minimize them. She can modify
the post attributes if she is the owner of the violating post. Otherwise, she can
contact the post’s owner to modify that post or to remove it completely.

5.2 Variations on Example Scenarios

We introduce two more examples that demonstrate privacy violations in an on-
line social network. The first example requires multiple posts to be processed
together to identify a privacy violation. We show that PriGuardTool can de-
tect this successfully. The second example contains a privacy violation that can
only be detected by processing non-structured data about the post (e.g., the
image or text). In its current form, PriGuardTool cannot accommodate such
processing and thus cannot detect the violation.



Consider the following example that shows how a privacy violation occurs
indirectly in the presence of other users’ posts.

Example 2 Bob shares a picture where he tags Diane. After a while Diane
shares her location in a post. Alice and Charlie, who are friends of Bob, get to
know Bob’s location. However, Bob did not want to reveal his location.

In Example 2, a privacy violation occurs through inference. By combining
Bob’s post with Diane’s post, one can infer Bob’s location (see the inference rule
r8). However, in order to detect such violations, we should be able to collect
Diane’s posts as well. In the current implementation, we focus on collecting
the user’s data. For this example, Diane’s post would not be extracted since
it does not have any explicit tag for Bob. Note that PriGuardTool is able
to detect violations of different types by the use of semantic rules when data is
available. Another solution would be to integrate PriGuardTool to Facebook.
In another words, if PriGuardTool ran as an internal application rather than
an external one, then it would have access to the data and detect the privacy
violation easily.

In the following example, the user shares a post that includes textual infor-
mation, which reveals the location of the user.

Example 3 Bob shares a status message: “Hello Las Vegas, nice to finally meet
you!”. This message is shared with his friends.

In Example 3, Bob discloses his location himself. Hence, a privacy breach
occurs because of the user itself. However, such a privacy violation cannot be
identified by PriGuardTool because current agents do not analyze textual
information to extract meaningful information. That is, a human can easily
understand that Las Vegas is a city and that Bob is currently there. However,
an agent would need to use Natural Language Processing (NLP) tools to find
that Las Vegas is a location name, and the post being shared is indeed a location
post. Thus, his friends reading this message would be violating Bob’s privacy.
This task is not straightforward in the context of privacy. An agent can recognize
entities in a text by the use of external tools. However, it is unknown how these
entities would affect the privacy of the user. We leave this point as a future work.

6 Discussion

This paper describes PriGuardTool, which is a concrete implementation of
PriGuard, a semantic approach for detecting privacy violations in OSNs. Pri-
GuardTool allows a user to specify her privacy constraints using a Web-based
interface. The specified constraints are then converted into commitments. The
tool then checks for commitment violations in a given system, which signals a
privacy breach.



6.1 Related Work

While various approaches for privacy management exist, the number of tools is
scarce. CoPE is a collaborative privacy management system that is developed
to run as a Facebook application [24]. The idea is that each post is co-owned
by multiple users that are affected by the post; e.g., because the individual is
tagged or mentioned in the post. First, each co-owner specifies her own privacy
requirement on a particular post. Then, the co-owners vote on the final privacy
requirement on the post. The post is shared accordingly.

FaceBlock is an application designed to preserve the privacy of users that use
Google Glass [20]. Given that interactions happen more seamlessly with wearable
devices, it is possible that an individual takes a picture in an environment and
shares it without getting explicit consent from others in the environment. To
help users manage their privacy, FaceBlock allows users define their privacy
rules with Semantic Web Rule Language (SWRL) and uses a reasoner to check
whether any privacy rule is triggered. If so, FaceBlock obscures the face of the
user before sharing the picture.

PriNego [17,9] and PriArg [11] are systems that have been built over the
same framework. Users’ privacy constraints are represented with SWRL rules.
PriNego is a negotiation framework that allows users to negotiate their privacy
constraints before a post is shared. At each iteration of the negotiation, a given
post is updated based on privacy concerns of the users. For example, after the
negotiation is done, the post might have fewer members in its audience list
or fewer individuals tagged. PriArg uses argumentation to facilitate agreement
among users. It enables users to attack each other’s privacy concerns with infor-
mation they provide (i.e., arguments). At the end of the argumentation, whether
a post will be shared or not is decided.

Kafali et al. develop PROTOSS [8], where the privacy agreements are again
represented with commitments. However, in that work, the commitments are
taken from the user as opposed to being generated as we have done here. Further,
the system evolution is being tested for violations rather than the current state
of the system. PROTOSS uses model checking hence in a given state of the social
network, all the possible states are generated. In PriGuardTool, we are only
concerned with a single state of the system, we can detect violations much faster
and with less memory requirements then them.

Akcora, Carminati and Ferrari develop a graph-based approach and a risk
model to learn risk labels of strangers; e.g., friends of friends [1]. The intuition is
that these will enable them to detect individuals who are likely to violate privacy
constraints. Our focus is not on identifying potential individuals that can view
private data but on detecting violations through interactions on the OSN.

Liu and Terzi address the privacy problem in OSNs from the user’s per-
spective [16]. They propose a model to compute a privacy score of a user. The
privacy score increases with the sensitivity and visibility of the revealed infor-
mation. Sensitivity is specific to a profile item while visibility of a profile item
depends on the privacy settings of the user. It would be interesting to capture
these concepts in PriGuard ontology and make inferences based on that.



Squicciarini et al. propose PriMa (Privacy Manager), which supports semi-
automated generation of access rules according to the user’s privacy settings and
the level of exposure of the user’s profile [23]. They further provide quantitative
measurements for privacy violations. Quantifying violations is an interesting
direction that we want to investigate further. Our use of an ontology can make
it possible to infer the extents of the privacy violation, indicating its severity.

Fang and LeFevre propose a privacy wizard that automatically configures
the user’s privacy settings based on an active learning paradigm [4]. Their ap-
proach is based on the user’s privacy preferences while we consider the privacy
preferences of the user and her social graph. Moreover, we focus on detecting
privacy violations that would happen because of conflicting privacy concerns of
the users.

Krishnamurthy points out the need for privacy solutions to protect the user
data from all entities who may access it [14]. He suggests that OSN users should
know what happens to their privacy as a result of their actions. For this, a Face-
book extension called Privacy IQ is developed where users can see the privacy
reach of their posts and the effect of their past privacy settings. PriGuardTool
is similar to this work in that we can also compare the user’s privacy expecta-
tions with the actual state of the system. However, our major contribution is on
detecting privacy breaches that take place because of interactions among users
and inferences on information.

6.2 Limitations and Future Developments

The main obstacle we faced in adapting PriGuardTool to Facebook was that
the current Facebook API does not allow a user to obtain much of the infor-
mation she sees programatically. For example, a user can see her list of friends
when she logs in to Facebook, but she cannot get the same list using the API.
Hence, we could only construct a partial list of friends using information such
as comments, tags, and so on. Although most of the time, the constructed in-
formation was sufficiently accurate, it would have been much easier if the agent
could access the information to begin with.

In this work, we assume that users are able to input their privacy concerns
in a fine grained way. However, users have difficulties to specify their privacy
concerns even if they have the necessary tools [4]. To solve this problem, one
approach would be to conduct user studies to understand the user needs better.
As a result, we can design better user interfaces that guide the users in specifying
their privacy expectations. Another approach would be to learn the privacy
concerns of the user automatically [19,10]. This would minimize the user burden
and errors by suggesting privacy configurations.

The current system supports commitments between a user and the online
social network. However, in principle, if the online social network itself supports
a distributed architecture (e.g., GnuSocial6), then individual users will be re-
sponsible for managing their content and thus the system would have to support

6 https://gnu.io/social/

https://gnu.io/social/


commitments among users. This would lead to interesting scenarios and could
serve as a natural domain to demonstrate operations on commitments. For ex-
ample, Bob could commit to Alice not to share her pictures and then follow up
with his friends to ensure that Alice’s pictures are not shared. This could lead to
multiple commitments being merged and manipulated to preserve privacy and
give rise to composition of commitments for representing realistic scenarios [2].

Another important improvement could be to detect privacy violations in a
distributed manner. The current implementation receives a state of the system
and checks for possible violations in that state. A distributed implementation
could help process the state considerably faster. This would enable the tool to
be used online easily.

Acknowledgments

This work is supported by TUBITAK under grant 113E543. This work extends
the demonstration paper that was presented at AAMAS 2016 [13]. We thank
Hamza Ozturk and Safa Orhan for helping with integrating PriGuardTool to
Facebook.

References

1. Akcora, C.G., Carminati, B., Ferrari, E.: Risks of friendships on social networks.
In: IEEE International Conference on Data Mining (ICDM). pp. 810–815 (2012)

2. Baldoni, M., Baroglio, C., Chopra, A.K., Singh, M.P.: Composing and verifying
commitment-based multiagent protocols. In: Proceedings of the 24th International
Joint Conference on Artificial Intelligence (IJCAI). pp. 10–17 (2015)

3. Carminati, B., Ferrari, E., Heatherly, R., Kantarcioglu, M., Thuraisingham, B.:
Semantic web-based social network access control. Computers & Security 30(2),
108–115 (2011)

4. Fang, L., LeFevre, K.: Privacy wizards for social networking sites. In: Proceedings
of the 19th international conference on World wide web. pp. 351–360. ACM (2010)

5. Gürses, F., Berendt, B.: The social web and privacy: Practices, reciprocity and con-
flict detection in social networks. Privacy-Aware Knowledge Discovery. Chapman
& Hall/CRC Press, New York, NY pp. 395–432 (2010)

6. Heussner, K.M.: Celebrities’ photos, videos may reveal location. ABC News, Avail-
able at: http://goo.gl/sJIFg4

7. Hu, H., Ahn, G.J., Jorgensen, J.: Multiparty access control for online social net-
works: model and mechanisms. IEEE Transactions on Knowledge and Data Engi-
neering 25(7), 1614–1627 (2013)

8. Kafalı, O., Günay, A., Yolum, P.: Detecting and predicting privacy violations in
online social networks. Distributed and Parallel Databases 32(1), 161–190 (2014)

9. Keküllüoğlu, D., Kökciyan, N., Yolum, P.: Strategies for privacy negotiation in
online social networks. In: Proceedings of the 1st International Workshop on AI
for Privacy and Security (PrAISe). pp. 2:1–2:8 (2016)

10. Kepez, B., Yolum, P.: Learning privacy rules cooperatively in online social net-
works. In: Proceedings of the 1st International Workshop on AI for Privacy and
Security (PrAISe). pp. 3:1–3:4. ACM (2016)

http://goo.gl/sJIFg4


11. Kökciyan, N., Yaglikci, N., Yolum, P.: Argumentation for resolving privacy disputes
in online social networks: (extended abstract). In: Proceedings of the 15th Interna-
tional Conference on Autonomous Agents & Multiagent Systems, Singapore, May
9-13, 2016. pp. 1361–1362 (2016)

12. Kökciyan, N., Yolum, P.: Priguard: A semantic approach to detect privacy vi-
olations in online social networks. IEEE Transactions on Knowledge and Data
Engineering 28(10), 2724–2737 (2016)

13. Kökciyan, N., Yolum, P.: PriGuardTool: A tool for monitoring privacy violations in
online social networks (demonstration). In: Proceedings of the 2016 International
Conference on Autonomous Agents and Multiagent Systems (AAMAS). pp. 1496–
1497 (2016)

14. Krishnamurthy, B.: Privacy and online social networks: can colorless green ideas
sleep furiously? IEEE Security and Privacy 11(3), 14–20 (May 2013)

15. Lampinen, A., Lehtinen, V., Lehmuskallio, A., Tamminen, S.: We’re in it together:
interpersonal management of disclosure in social network services. In: Proceedings
of the SIGCHI conference on human factors in computing systems. pp. 3217–3226.
ACM (2011)

16. Liu, K., Terzi, E.: A framework for computing the privacy scores of users in online
social networks. ACM Transactions on Knowledge Discovery from Data (TKDD)
5(1), 6:1–6:30 (2010)

17. Mester, Y., Kökciyan, N., Yolum, P.: Negotiating privacy constraints in online so-
cial networks. In: Koch, F., Guttmann, C., Busquets, D. (eds.) Advances in Social
Computing and Multiagent Systems, Communications in Computer and Informa-
tion Science, vol. 541, pp. 112–129. Springer International Publishing (2015)

18. Motik, B., Patel-Schneider, P.F., Parsia, B., Bock, C., Fokoue, A., Haase, P., Hoek-
stra, R., Horrocks, I., Ruttenberg, A., Sattler, U., et al.: Owl 2 web ontology lan-
guage: Structural specification and functional-style syntax. W3C recommendation
27(65), 159 (2009)

19. Mugan, J., Sharma, T., Sadeh, N.: Understandable learning of privacy preferences
through default personas and suggestions. Tech. Rep. CMU-ISR-11-112, Carnegie
Mellon University, School of Computer Science (2011)

20. Pappachan, P., Yus, R., Das, P.K., Finin, T., Mena, E., Joshi, A.: A semantic
context-aware privacy model for faceblock. In: Proceedings of the 2nd International
Conference on Society, Privacy and the Semantic Web - Policy and Technology.
pp. 64–72. PrivOn (2014)

21. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. ACM
Transactions on Database Systems 34(3), 16 (2009)

22. Singh, M.P.: An ontology for commitments in multiagent systems. Artificial Intel-
ligence and Law 7(1), 97–113 (1999)

23. Squicciarini, A.C., Paci, F., Sundareswaran, S.: PriMa: a comprehensive ap-
proach to privacy protection in social network sites. Annals of Telecommunica-
tions/Annales des Télécommunications pp. 1–16 (2013)

24. Squicciarini, A.C., Xu, H., Zhang, X.L.: Cope: Enabling collaborative privacy man-
agement in online social networks. Journal of the American Society for Information
Science and Technology 62(3), 521–534 (2011)

25. Such, J.M., Rovatsos, M.: Privacy policy negotiation in social media. ACM Trans-
actions on Autonomous and Adaptive Systems (TAAS) 11(1), 4:1–4:29 (2016)

26. Yolum, P., Singh, M.P.: Flexible protocol specification and execution: applying
event calculus planning using commitments. In: Proceedings of the First Inter-
national Joint Conference on Autonomous Agents and Multiagent Systems. pp.
527–534 (2002)


	PriGuardTool: A Web-based Tool to Detect Privacy Violations Semantically

