
User Generated Human Computation Applications
Nadin Kokciyan

Department of
Computer Engineering

Bogazici University
Istanbul, Turkey

Email: nadin.kokciyan@boun.edu.tr

S. Uskudarli
Department of

Computer Engineering
Bogazici University

Istanbul, Turkey
Email: uskudarli@cmpe.boun.edu.tr

T. B. Dinesh
Servelots Infotech
Bangalore, India

Email: dinesh@servelots.com

Abstract—Social Web applications have successfully trans-
formed content consuming users into content producers. Aside of
socializing, these applications are frequently used to disseminate
information and coordinate purposeful activities, such as disaster
response, political action, and neighborhood organizations. These
activities are carried out via human interpreted messages. In
many cases, dedicated information processing spaces would better
serve such needs. Unfortunately, a typical Web user is not able to
create even very simple applications, as they require significant
technical know-how. This work proposes an approach towards
creating simple collaborative applications. The approach, called
WeFlow, proposes a collaborative application specification, an
application generator, and an execution engine. The WeFlow
framework is presented with focus on the implementation issues.
A case study, where users report and track accessibility violations,
is presented for demonstration purposes.

Index Terms—Human-centered computing, Collaborative com-
puting, Human information processing, Workflow management,
Computer-supported collaborative work

I. INTRODUCTION

Collaborative applications such as wikis, social networking
applications like Facebook and Twitter have greatly increased
user participation. These applications are used to socialize,
communicate, access or disseminate information, coordinate
activities, etc. In fact, they are also utilized to serve pur-
poseful activities, such as responding to disasters, coordinat-
ing political action, and organizing neighborhood informa-
tion and activities. However, these platforms serve message
transmission among humans who interpret and act on them.
Whereas, a platform for community information processing
would serve such needs much better, particularly in the long
term. This is very unfortunate since the Web is such a great
platform for collaboration. Many collaborative applications,
such as Wikipedia and human computation applications [1],
rely on user participation. The impressive results of such
applications demonstrate the effectiveness of utilizing humans
in their computation cycle. Participants are often unknown
volunteers. Their contributions may be large or small. Most
often the latter. Sometimes different kinds of contributions are
performed, other times the same type of action is repeated by
different participants, e.g. tagging pictures. While most users
are able to generate content, they are not able to introduce
new functionality. As a result they are not able to leverage the
power of the Web to serve their needs.

The aim of this work is to address this gap in user defined
Web applications. In another words, the idea is to empower
typical Web users (who use the Web but can’t program) with
the ability to generate Web behavior (applications). This work
introduces an approach towards a framework for creating user
generated applications. A model (called WeFlow) that includes
the specification, generation, and execution of participatory
applications is presented. This approach is mainly influenced
by workflows and human computation. This paper focuses on
the implementation of the generation and execution of user de-
fined participatory applications. A case study for reporting and
tracking accessibility violations is presented for demonstrative
purposes.

II. BACKGROUND

Human computation applications involve many users mak-
ing small contributions in order to accomplish a collaborative
activity. A collaborative activity is broken down into tasks
that are distributed among humans and computers based on
their suitability for performing those tasks [2], [3]. Humans
solve large-scale computation problems through online games,
Games with a Purpose [4]. The reCAPTCHA [5] is a service
that helps digitizing text (books, newpapers). An overview of
human computation systems is detailed in Quinn and Bederson
work [1].

A workflow consists of a sequence of small activities. Work-
flow participants (humans, computers) interact with workflows
via workflow management (WFM) system. A WFM system
defines, manages and executes workflows in a computer driven
way. WFM systems have certain common characteristics [6],
[7]: (1) modeling the workflow process and its activities,
(2) managing the worklow process and sequencing activities,
and (3) interacting with human users and IT applications for
processing activities.

III. WEFLOW: AN APPROACH FOR CREATING HUMAN
COMPUTATION APPLICATIONS

WeFlow is about supporting collaborative purposeful activ-
ities. So, there is an overall activity that is to be carried out
by a collection of people. The collection of people may be
known in advance (neighbors) or may be unknown (anyone
can volunteer). The basic idea is to partition the overall work
into achievable tasks, make them available to participants, and

2012 ASE/IEEE International Conference on Social Computing and 2012 ASE/IEEE International Conference on Privacy, Security,
Risk and Trust

978-0-7695-4848-7/12 $26.00 © 2012 IEEE

DOI 10.1109/SocialCom-PASSAT.2012.118

593

https://www.researchgate.net/publication/2956916_Games_with_a_Purpose?el=1_x_8&enrichId=rgreq-6bb8759ee0f04298a34032b7d2c84ae6-XXX&enrichSource=Y292ZXJQYWdlOzI2MTQyNzg1NTtBUzozNzkxMDY3Nzc2ODE5MjJAMTQ2NzM5NzUwNzM4Mw==
https://www.researchgate.net/publication/235720393_Workflow_Management_Coalition_The_Workflow_Reference_Model?el=1_x_8&enrichId=rgreq-6bb8759ee0f04298a34032b7d2c84ae6-XXX&enrichSource=Y292ZXJQYWdlOzI2MTQyNzg1NTtBUzozNzkxMDY3Nzc2ODE5MjJAMTQ2NzM5NzUwNzM4Mw==
https://www.researchgate.net/publication/23171401_reCAPTCHA_Human-based_character_recognition_via_Web_security_measures?el=1_x_8&enrichId=rgreq-6bb8759ee0f04298a34032b7d2c84ae6-XXX&enrichSource=Y292ZXJQYWdlOzI2MTQyNzg1NTtBUzozNzkxMDY3Nzc2ODE5MjJAMTQ2NzM5NzUwNzM4Mw==
https://www.researchgate.net/publication/228139892_Harnessing_Crowds_Mapping_the_Genome_of_Collective_Intelligence?el=1_x_8&enrichId=rgreq-6bb8759ee0f04298a34032b7d2c84ae6-XXX&enrichSource=Y292ZXJQYWdlOzI2MTQyNzg1NTtBUzozNzkxMDY3Nzc2ODE5MjJAMTQ2NzM5NzUwNzM4Mw==
https://www.researchgate.net/publication/221516544_Human_Computation_A_Survey_and_Taxonomy_of_a_Growing_Field?el=1_x_8&enrichId=rgreq-6bb8759ee0f04298a34032b7d2c84ae6-XXX&enrichSource=Y292ZXJQYWdlOzI2MTQyNzg1NTtBUzozNzkxMDY3Nzc2ODE5MjJAMTQ2NzM5NzUwNzM4Mw==
https://www.researchgate.net/publication/221516544_Human_Computation_A_Survey_and_Taxonomy_of_a_Growing_Field?el=1_x_8&enrichId=rgreq-6bb8759ee0f04298a34032b7d2c84ae6-XXX&enrichSource=Y292ZXJQYWdlOzI2MTQyNzg1NTtBUzozNzkxMDY3Nzc2ODE5MjJAMTQ2NzM5NzUwNzM4Mw==

coordinate the tasks until the work is completed. Of course,
it is possible that some kind of work doesn’t have a natural
completion, such as defining an online encyclopedia.

A participatory human computation application specifica-
tion (WeFlow Specification) consists of defining the follow-
ing: (1) decomposing a collaborative activity into tasks, (2)
describing the resources (participants) that can perform the
tasks (human or machine), (3) defining the control flow which
specifies sequencing constraints among tasks and (4) defining
the data flow between tasks.

What the application designer is effectively doing is ex-
plicitly encoding the activity of coordinating collective tasks.
Instead of making a to do list and keeping track of who
is doing what towards a shared goal, this coordination is
encoded in a Web application. Doing so, of course, expands
the potential resources immensely, as potentially anyone on the
Web can participate. The WeFlow framework can be viewed as
a community information management application generator.
WeFlow is based on a workflow model to handle data and
control dependencies among tasks. Three main aspects are
addressed:

1) Collaborative Work Specification in terms of the tasks,
the dependencies among tasks, and resources that will
perform the tasks.

2) Generation of Web applications corresponding to spec-
ifications.

3) Execution of generated Web applications.
WeFlow framework is depicted in Figure 1. Specifier is a

regular Web user who is interested in creating a collaborative
web application. Specifier defines a WeFlow Specification.
WeFlow Application Generator generates a WeFlow Appli-
cation (human computation web application) given a WeFlow
Specification. WeFlow Execution Engine executes a WeFlow
Application by presenting tasks to participants in accordance
with the specification.

IV. WEFLOW SPECIFICATION

WeFlow Specifications describe collaborative activities.
Creating a specification entails describing the tasks, people,
control flow and data flow among tasks. Essentially this
is a workflow definition for a distributed set of potentially
unknown persons. The details of these aspects are provided
in the following sections. WeFlow Specification is briefly
described in this section. For further details, please refer to
Chapter IV of [8].

A. Task
A task is a unit of a collaborative activity to be accom-

plished. WeFlow considers two categories of tasks based on
who performs the task: human task and automated task. Each
task that requires human feedback is considered a Human
Task. An Automated Task refers to a computerized activity,
Automated tasks may be performed by local systems or
external systems (e.g. web services). As the focus of this work
is related to human computation, we emphasize human tasks.
Each task consists of:

1) Inputs A task may have several inputs that come from
data created by prior tasks or from the person performing
the task. There are two types of inputs that are typed
variables:

• zero or more task input variables, which receive
values from previously performed tasks.

• zero or more human input variables, which receive
values from a human performing the task.

2) Human Instruction Human tasks require instructing the
person what is expected from them. Any combination of
the following may be used to specify these instructions:

• text, e.g. “Tag this picture”
• task input variables, e.g. “Upload $cnt $animal type

pictures”.
• human input variables, e.g. for the “Tag a Bird

Picture” task, the instruction “Provide a tag $tag
for this picture $picture”, where $picture is a task
input and $tag is a human input ($ sign is a special
character indicating a variable).

3) Outputs A task may have zero or more output variables
which are typed variables. The value of an output
variable is expressed in terms of task and human input
variables.

Task Types: WeFlow provides some predefined types of tasks:
a) Atomic Task: is a basic task that cannot be broken

down into other tasks.
b) Conditional Task: Task execution depends on a

condition. A Conditional Task requires the specification of a
Conditional Expression to satisfy and choose an appropriate
task to execute.
IfElse Task provides a choice between two different tasks
based on the satisfiability of the Conditional Expression. For
example, consider a “Tag Something” task, where a person
is asked to choose between ‘audio’ and ‘image’. If the user
chooses ‘audio’ then “Tag a Sound” task will be executed,
otherwise “Tag an Image” will be executed. The output of
IfElse task consists of the output of executed task.
Choice Task provides a choice between multiple different
tasks. The task performer is asked to make a choice among a
list of tasks. For example, a “What do you want to do?” task
may present the user with a list of possible tasks to perform.
The user simply makes a choice among the tasks, which will
be the next executed task. The output of choice task consists
of the output of executed task.

c) Repetition Task: computes a subtask several times in
sequence. A repetition task consists of a Conditional Expres-
sion and a Task, its subtask. The Task is repeatedly executed
as long as the Conditional Expression evaluates to true. Upon
each completion of a Task the Conditional Expression is
updated with the outputs of the Task. The output of repetition
task consists of Task’s output. For example, the “Collect 50
Books” task defines a task for collecting books from people.
The condition is such that if total number of books is less than
50, then this task will be repeated. Upon each completion of
this task total number of books is updated. Once 50 books are

594

Fig. 1. Overview of The WeFlow Framework.

collected, then the repeat process terminates. If no restrictions
are specified, each iteration may be performed by different
users.

d) DoAll Task: groups a set of task (subtasks) that can
be executed in parallel. These subtasks may be executed in any
order. For example, the “Annotate a bird picture” task may be
decomposed into the “Tag a bird picture” and “Identify the
species of a bird” subtasks. These subtasks can be executed
in parallel. The DoAll task is completed when all its subtasks
are completed. The output of DoAll task consists of the output
of its subtasks.

e) Collective Task: is defined by a subtask that should
be executed multiple times in a non-sequential manner. The
subtask is duplicated as many times as required. The result
of a collective task is an aggregation of the results of each
subtask. The subtask may be duplicated N number of times
or set to infinite if the number of repetitions is unbounded. For
example, a Collective Task “Tag a bird picture” with 5 times,
defines a task for tagging a bird five times. The output of the
collective task consists of an output array including five tags
provided by human performers.

B. People
Once a collaborative activity is decomposed into tasks, it

is also important to describe who can perform the tasks.
It all depends on who is specifying the flow and who is
interested in making use of it. The specification must make
clear the policy of who can perform which tasks and what
access rights they have. This is done with roles. In WeFlow
Framework, workflow participants have roles and each human
task is associated with one or more roles. This approach
enables the classification of users, which can be utilized
for describing permissions to a set of users rather than an
individual approach. Thus, each human task may be performed
by one of specified roles. WeFlow aims to generate human
computation type web applications, where unknown users can
participate. Tasks can not be assigned to specific users. Tasks
are associated with roles, and roles are associated with people.
A WeFlow Specification can only specify which tasks a user
may perform indirectly through roles.

C. Flow

In a workflow, tasks have to be executed in a specific order
and this sequencing in which work needs to be done is the
control flow aspect of a workflow. At execution time, a task
is initialized in terms of its inputs, i.e., data required to do
the work has to be mapped to task input variables. A task is
finalized in terms of its outputs, i.e., produced data has to be
mapped to task output variables. This data perspective defines
data flow aspect of a workflow. In WeFlow Specification, data
flow is a declarative definition of data mappings between tasks
and/or within tasks. According to data mapping information,
a task is instantiated and executed. There are three types of
data mappings:

1) Input Mappings: These are values mapped to inputs of
task. These values come from previously performed tasks.

2) Human Input Mappings: These are data mappings be-
tween a human task and a human. At execution time of a task,
data provided by human performer is mapped to human input
variables. Communication between human tasks and humans
is done through channels.

3) Output Mappings: An output variable value of a task is
formulated in terms of input and human input variables of this
task. Input variable values may directly be mapped to output
variable values.

V. WEFLOW APPLICATION GENERATOR

A WeFlow Specification includes the specification of many
tasks, and for each human task a Web page is generated by We-
Flow Application Generator. Humans interact with generated
Web application to perform tasks. Hence, a Web controller is
also generated in order to handle human activities.

First, a task is represented on Web. Task instructions and
task variables are mapped to HTML elements. For example,
WeFlow Text datatype is represented as <input type=“text”>
in HTML language. Second, human performer is informed by
the task’s human instruction. A task instruction is represented
on Web as the following: (1) text is displayed as it is, (2)
each referenced task input variable is replaced by its value,
and (3) each referenced human input variable is replaced by a

595

corresponding Web input method as described in the previous
section.

VI. WEFLOW APPLICATION EXECUTION

WeFlow Execution Engine is the core of WeFlow frame-
work. Web applications generated by WeFlow Application
Generator are executed by this engine. It handles: (1) instanti-
ation of Web applications, (2) instantiation of human tasks,
(3) state of human participants and the workflow, and (4)
distribution of tasks to workflow participants.

VII. A HUMAN COMPUTATION WEB APPLICATION

Banu is a student living in Rumelihisarustu and she’s a reg-
ular Web user. She would like to create a place where people
can: (1) report places not accessible in Rumelihisarustu such
crumbling sidewalks, and/or objects in a bad condition such
broken chairs, (2) fix reported problems, (3) verify whether
a reported problem is fixed or not. Some of them work in
reporting process, some in fixing process and some in verifying
process. This application will be referred as Rumelihisarustu
Accessibility project in the following sections.

A. Rumelihisarustu Accessibility Specification
Banu specifies Rumelihisarustu Accessibility in terms of

WeFlow tasks, people, control and data flows among tasks, as
depicted in Figure 2. Currently, this specification is given in
XML format. Each rectangle represents a WeFlow task, each
arrow shows a control flow between tasks, human tasks are
denoted with a circle figure on top of the task and different
colors show different groups. For clarity, data flow information
is not depicted.

1) Task Specification: Each human task has a human
instruction specified by Banu. For clarity, task instructions are
not included here. Banu describes tasks as the following:

• Choose Task is a Choice task and allows a human to
select one of two tasks: Share Info and List Items.

• Share Info is a human task. Human performer provides a
picture url, information regarding this picture and a status
flag, ‘pending’ or ‘resolved’.

• List Items is an automated task and collects items pro-
vided by human performers from the data store.

• Show Items is a human task. Human performer sees a list
of items and pick one item from the list by providing its
id.

• Pick Item is an automated task. It gets an item from the
data store given an item id.

• Update Item is a human task. Human performer sees a
picture, some information and a status flag of an existing
item. She updates status flag of this item.

• Is Resolved is an IfElse task. If status flag of an item
is ‘resolved’ then Verify Item task is performed, Choose
Task otherwise.

• Verify Item is a human task. Human performer verifies
whether a reported item is really fixed or not. And she
provides a status flag (‘resolved’ or ‘pending’) for this
item.

• Save Item is an automated task. It stores an item to the
data store.

• Show Item is a human task. Human performer sees a
picture, some information and a status flag of an existing
item.

2) People Specification: Banu specified tasks to be per-
formed: Choose Task, Share Info, Show Items, Update Item
and Show Item are human tasks to be performed by anyone;
on the other hand, Verify Item task can only be performed by
verifiers group users.

3) Flow Specification:
a) Control Flow Specification: In Figure 2, arrows depict

control flow aspect in Rumelihisarustu Accessibility. For ex-
ample, when the execution of List Items task is done, a human
will perform Show Items task.

b) Data Flow Specification: After execution of a task,
some data is provided by its performer and this data moves
through the workflow. For example, Pick Item provides picture
information which is mapped to Update Item input infor-
mation. Input information may directly mapped to output
information of a task. For example, newstatus is an human
input information for Update Item. It is mapped to Update
Item output information. All data mappings are done in a same
way.

B. Rumelihisarustu Web Application Generation
An application place is created to store application specific

files. For each human task, templates (web pages) are created.
A controller is generated in order to handle web requests for
Rumelihisarustu Accessibility.

C. Rumelihisarustu Web Application Execution
Banu uploads Rumelihisarustu Accessibility specification to

WeFlow framework and starts the execution of this application
by pressing Start Workflow button. Merve, who also lives in
Rumelihisarustu, has some information to report. And she
decides to join this application and she comes up with Choose
Task task. After reading the task instruction, she selects Share
Info task to perform. Merve provides some data: her picture
url showing a broken sidewalk, some textual information
related to this picture and status flag of the shared item
which is ‘pending’. Other people, living in the neighborhood,
also report new items using the application. Hakan joins this
application and selects List Items task in order to see reported
items. He comes up with Show Items task where he finds two
reported items. Hakan picks one item by providing its item
id and wants to update information about an item previously
reported by Merve, see Figure 3. And he modifies item’s status
flag to ‘resolved’. Banu, who is the specifier of the application,
is part of verifiers group. Thus, she may verify updated items
rather they are fixed or not. As Hakan updated an item, Banu
checks whether provided information is correct, see Verify Item
task. And she decides that this is correct and types ‘resolved’
as the item status. Kaan joins the application and sees current
list of reported items. Note that the status flag of the first item
(uploaded by Merve) is updated to ‘resolved’ as verified by
Banu.

596

!"##$%&
'($)

*"(+%
,-.#

/0$1
,1%2$

*"#3
,1%2$

405)
,1%2

678(1%
,1%2 9%+0.:

,1%2
*(;%
,1%2

*"#3
,1%2

0$&<%$#=;%8

(-:#-%

;%+0>%+$&?+#@7

Fig. 2. Rumelihisarustu Accessibility Specification

Fig. 3. Update Item

VIII. IMPLEMENTATION

Thus far, we have a preliminary implementation of the
proposed approach which includes basic concepts of WeFlow
framework. In this implementation, Python is used as the
programming language, ZODB is chosen to be the data storage,
and web.py the web server. Further details about the implemen-
tation can be found in Chapter V of [8].

First, a human computation web application is specified
in XML. Second, a web application is generated given this
XML specification. Screen generation captures the essential
elements. Third, generated web application is executed. The
WeFlow editor (user interface) to specify workflows has not
yet been implemented. There has been no attempt to create
appealing user interface designs, which obviously must be
handled in the future.

A. WeFlow Specification Handler
WeFlow Specification is based on XML which is a standard

format to keep data in a structured way. Tasks, people, control
and data flow elements are described with specific XML
structures. Further implementation details of this specification
will not be detailed in this paper.

B. WeFlow Data Handler
ZODB is a native object database for Python and is widely

used by Python community. For data storing purposes, ZODB
is used as part of data layer of WeFlow Framework. There
are two data handlers: (1) Specification Data Handler is used
to get and/or store data related to WeFlow Specification, (2)
Application Data Handler is used to get and/or store data
related to running human computation web applications.

C. WeFlow User Handler
The User Handler deals with registering new users, authen-

ticating users and creating new sessions, checking user access
rights, deleting and/or modifying users, getting user workflows
and setting user access rights.

D. WeFlow Application Generator

The WeFlow Application Generator Module generates a hu-
man computation web application using WeFlow Specification.
HTML Data Generator maps WeFlow Specification task input
data to web.py form elements. Application Template Generator
creates human computation web application folder structure
(physical space to keep files), templates (web views of human
tasks) and a controller (handler for web requests). This module
works along with some other libraries: (1) htmlDoc library is
used in order to create HTML templates given HTML tags,
(2) PyGen library is used in order to generate python files
including python code.

E. WeFlow Execution Module

The WeFlow Execution Module is the core module of
The WeFlow Framework. It instantiates workflows, executes
all web applications, distibutes tasks to various workflow
participants and aggregate responses, keeps track of the state
of every web application and human performer. Some of its
modules are as the following:

• State Handler keeps track of state information of (i) users,
(ii) web applications. Given a workflow instance, this
module gives current state of a web application and a
user participant. State information is provided to Task
Handler.

• Task Handler call tasks for execution. It gets next task
information from Control Flow Handler module, checks
type of next task and then call appropriate method. After
execution, it calls State Handler module for updating state
information of the running workflow instance.

• Control Flow Handler calls State Handler to check cur-
rent state of an application instance. According to control
flow semantics of the application instance, it decides next
task to execute and then calls Task Handler module.

• Instantiator instantiates a web application once a new
WeFlow specification is loaded to the WeFlow Frame-

597

work. This module also takes care of the instantiation of
tasks in web applications.

F. WeFlow Tasklist Handler
This module manages the asynchronous interactions with

workflow participants: list new tasks to users, provides re-
quired data to accomplish task and collect accomplished tasks
via a web interface, as shown in Rumelihisarustu Accessibility
application.

IX. RELATED WORK

Facebook API provides facilities to develop web applica-
tions but its audience is IT-savvy people. Yahoo Pipes [9]
enables users to create mashups using content on the Web.
Many systems have been studied regarding micro-task mar-
kets such MTurk [10]. Crowdforge [11] is a framework that
allows publishing tasks (textual descriptions) into micro-task
markets. CrowdLang [12] is a programming language that
allows publishing tasks into MTurk. Turkit [13] is a procedural
programming language used to program iterative tasks in
MTurk. CrowdWeaver [14] is a visual workflow management
tool for crowd work. It does not provide a data model to
describe tasks, i.e., it is not possible to collect, search and
process data. It does not support to perform a task multiple
times in a sequential/non-sequential way. Jabberwocky [15] is
a social computing stack to write programs for crowdsourcing
platforms. Unlike most of these systems require programming
skills, WeFlow supports generation of web applications spec-
ified by regular Web users. Various workflow languages are
designed including YAWL [16], [17] and SMAWL [18].

X. DISCUSSION AND FUTURE WORK

Communities use social web applications for their purposes.
Current social web applications offer limited capabilities to
keep data processable. Therefore, retaining the long term
value of community information is becoming more crucial
for communities of purpose as well. We intend to develop
a visual language preserving WeFlow specification semantics,
and let regular Web users specify their envisioned applications.
WeFlow mobile version will simplify coordination. A robust
data model will help communities to describe their domain bet-
ter. We intend to add data export functionality for workflows:
(1) allowing people to save their own data, (2) enabling data
import/export from/to external systems such Semantic Web,
Linked Data. We plan to create a library of predefined tasks
and workflows to increase reusability. Furthermore, our initial
model allows a task to be performed by a single individual
at a time. This restriction will be relaxed to enable multiple
people on performing a same task.

XI. CONCLUSIONS

We have developed a specification language to define human
computation applications; an application generator that takes
a human computation application specification and produces
a web based application. The resulting web application can
be used by people via a web browser. The execution engine

executes the participatory web application by distributing the
tasks to participants as defined by the application specifica-
tion. We introduced one such a participatory web application
Rumelihisarustu Accessibility. Combined with a richer data
specification and a full fledged visual language, we envision
a productive application specification environment.

ACKNOWLEDGMENT

The authors are grateful to Prof. L.G.L.T. Meertens and
members of SoSLab (Complex Systems Lab at Bogazici
University) for their feedback and contributions during this
work. This work is partially funded by B.U. Research Fund
(BAP5709) and TAM Project (2007K120610).

REFERENCES

[1] A. J. Quinn and B. B. Bederson, “Human computation: a survey and
taxonomy of a growing field,” in Proceedings of the 2011 annual
conference on Human factors in computing systems, ser. CHI ’11. New
York, NY, USA: ACM, 2011, pp. 1403–1412.

[2] L. von Ahn, “Human computation,” in K-CAP ’07: Proceedings of the
4th international conference on Knowledge capture. New York, NY,
USA: ACM, 2007, pp. 5–6.

[3] T. W. Malone, R. Laubacher, and C. N. Dellarocas, “Harnessing Crowds:
Mapping the Genome of Collective Intelligence,” SSRN eLibrary, 2009.

[4] L. v. Ahn, “Games with a purpose,” Computer, vol. 39, no. 6, pp. 92–94,
Jun. 2006.

[5] L. von Ahn, B. Maurer, C. McMillen, D. Abraham, and M. Blum,
“reCAPTCHA: Human-Based Character Recognition via Web Security
Measures,” Science, vol. 321, no. 5895, pp. 1465–1468, Sep. 2008.

[6] D. Hollingsworth, “Workflow management coalition - the workflow
reference model,” Workflow Management Coalition, Tech. Rep., Jan.
1995.

[7] R. Allen, “Workflow : An introduction,” Production, pp. 15–38, 1998.
[8] N. Kokciyan, “Weflow: We follow the flow,” Master’s thesis, Bogazici

University, 2011.
[9] M. Pruett, Yahoo! pipes, 1st ed. O’Reilly, 2007.

[10] P. G. Ipeirotis, “Analyzing the amazon mechanical turk marketplace,”
XRDS, vol. 17, no. 2, pp. 16–21, Dec. 2010.

[11] A. Kittur, B. Smus, S. Khamkar, and R. E. Kraut, “Crowdforge:
crowdsourcing complex work,” in Proceedings of the 24th annual ACM
symposium on User interface software and technology, ser. UIST ’11.
New York, NY, USA: ACM, 2011, pp. 43–52.

[12] P. Minder and A. Bernstein, “Crowdlang - first steps towards pro-
grammable human computers for general computation.” in Human
Computation, ser. AAAI Workshops, vol. WS-11-11. AAAI, 2011.

[13] G. Little, L. B. Chilton, M. Goldman, and R. C. Miller, “Turkit: human
computation algorithms on mechanical turk,” in Proceedings of the 23nd
annual ACM symposium on User interface software and technology, ser.
UIST ’10. New York, NY, USA: ACM, 2010, pp. 57–66.

[14] A. Kittur, S. Khamkar, P. André, and R. Kraut, “Crowdweaver: visually
managing complex crowd work,” in Proceedings of the ACM 2012
conference on Computer Supported Cooperative Work, ser. CSCW ’12.
New York, NY, USA: ACM, 2012, pp. 1033–1036.

[15] S. Ahmad, A. Battle, Z. Malkani, and S. Kamvar, “The jabberwocky
programming environment for structured social computing,” in Proceed-
ings of the 24th annual ACM symposium on User interface software and
technology, ser. UIST ’11. New York, NY, USA: ACM, 2011, pp. 53–
64.

[16] W. M. P. van der Aalst, “The application of petri nets to workflow
management.” Journal of Circuits, Systems, and Computers, vol. 8, no. 1,
pp. 21–66, 1998.

[17] W. M. P. van der Aalst and A. H. M. ter Hofstede, “YAWL: yet another
workflow language,” Information Systems, vol. 30, no. 4, pp. 245–275,
Jun. 2005.

[18] C. Stefansen, “Smawl: A small workflow language based on ccs,” in
Harvard University, 2005.

598

